Remote Sensing Data Mining: New Problems and Research Opportunities

Ranga Raju Vatsavai (vatsavairr@ornl.gov)
Computational Sciences and Engineering Division
Oak Ridge National Laboratory

Collaborators:

Shashi Shekhar (CS/UMN)
Thomas E. Burk (RSL/UMN)
Budhendra Bhaduri (GIST/ORNL)

RS Data Mining

- Increasing spectral, spatial, and temporal resolutions
- Challenges
 - Insufficient no of ground truth training samples
 - Aggregate Classes
 - Overlapping Classes
- New Approaches
 - Semi-supervised Learning
 - Sub-class classification
 - Mixture models for multi-source data

Semi-supervised Learning

Spatial Semi-supervised Learning

Spatial Autocorrelation is very important, ignoring may result in salt and pepper noise

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Sub-classes and Overlapping Classes

- Training is domain specific (Same image but different classes in different applications)
 - Forester: Hardwood, Conifer, ..., Rest of image (few broad classes (Agriculture, Urban, Water)
 - Agriculture: Soybean, Wheat, ... Rest (forest, Urban, ...)
 - Violates basic assumption of unimodal Gaussian/class
- Mismatch between thematic classes and image classes
 - Upland hardwood vs. Low-land hardwood
 - High-density Urban vs. Low-density Urban

Sub-class Classification from Aggregate Class Labels class Labels

Each Class is Unimodal Gaussian

MLE

Each Aggregate Class is GMM

How many components?

BIC/AIC Model Selection

+ Parameter Estimation

What are these components?

Few labels/ sub-class Unlabeled Samples

Semi-supervised Sub-class Classification

U. S. DEPARTMENT OF ENERGY

Actual
Distribution
of Classes

User given (Aggregate Class)

Sub-classes Recovered from Agg. Cl.

Multi-source Classification

Mixture Model

$$p(x \mid \theta) = \sum_{i=1}^{M} \alpha_i p_i(x \mid \theta_i) \quad [p_i(.) - Gaussian]$$

Mixture Model for Multi-source Data

$$p(x_i \mid \theta) = \sum_{j=1}^{M} \alpha_j \prod_{l=1}^{2} p_{jl}(x_{il} \mid \theta_{jl})$$

Conclusions and Future Directions

- Semi-supervised
 - Improved accuracy for as few as 2 labeled samples per class, Spatial classification is better
 - Challenge Significance Testing + Matching
 - Future needs "pixels" to "objects"
- Sub-class Classification
 - Can be used to recognize large number of finer classes
 - Challenge collecting (few) labels for sub-classes
- Mixture Model for Multi-source Data
 - Very flexible framework
 - Challenge variable selection, stratification, ...
- We are working on
 - Image characterization (extending natural scene statistics)
 - Object-based classification, semantic labeling, image retrieval, ...

